Repair potential of a laboratory-processed nano-hybrid resin composite.

نویسندگان

  • Susanna Dall'oca
  • Federica Papacchini
  • Ivana Radovic
  • Antonella Polimeni
  • Marco Ferrari
چکیده

The purpose of this study was to compare the 24-h composite-to-composite microtensile bond strength of Gradia Forte (GF) repaired with the same or a different material after different surface treatments. Different groups were set up, in which composite blocks of GF were subjected to the following treatments: Group 1, sandblasting with 50-microm aluminum oxide and 37% phosphoric acid etching (PA); Group 2, bur roughening and etching with 37% PA; Group 3, etching with 37% PA only. In all groups, a bonding resin was used as an intermediate agent prior to layering of the repair material (Gradia Direct (GD), Gradia (G), or GF). Bond strengths were then determined and analysed statistically. Scanning electron microscopy (SEM) evaluation of substrates and bonded interfaces was also performed. Surface treatment (P < 0.001) and repair materials (P < 0.001) were factors that significantly affected repair strength, whereas their interaction (P = 0.31) had no significant effect. Group 3 showed significantly superior repair strength to Groups 1 and 2, whereas Group 2 showed significantly weaker repair strength to Groups 1 and 3. Irrespective of surface treatment, GD and G gave similar results, which were better than those obtained using GF. The lowest probability of failure was found for GD and G in Group 3, whereas the highest was found for GF in Groups 1 and 2. Premature failures occurred mainly with G and GF. No pre-testing failures were found in the sandblasting/GD subgroup. Surface-treated composites showed different textures under SEM, whereas composite-repair bonds showed comparable interfacial features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-vitro Comparison of the Impact of Four Types of Resin Composite on the Repaired Bond Strength and Surface Roughness After Sandblasting

Abstract Background and Aim: One of the major problems with resin composite restorations is the weakness of bonding between the new and aged composites. Since appropriate micromechanical retention is necessary for the repair of aged resin composite restorations, the level of surface roughness after sandblasting can be influential in this regard. Considering the diverse composition of avail...

متن کامل

Laboratory evaluation of shear bond strength of porcelain repair methods

Introduction: Porcelain fracture is a relatively common problem in clinical dental practice. Various methods have been proposed for repairing porcelain fractures including direct composite resin repair or construction of a porcelain laminate veneer and its cementation with a resin cement. Evaluation of shear bond strength of porcelain repair methods was the purpose of this study. Methods: Tw...

متن کامل

In Vitro Comparison of the Effect of Nano-Hybrid Composite Resin and Amalgam on the Adhesion of Streptococcus Mutans

Background and Aim: Due to the increasing use of restorative materials, finding a suitable material with low adhesion rate and colonization of pathogenic Streptococcus mutans has a significant importance. The purpose of this study was the comparison of the adhesion rate of Streptococcus mutans to &ldquo;Nano-hybrid composite&rdquo; and &ldquo;Amalgam&rdquo; at 1, 3, and 7 day intervals. Method...

متن کامل

Nanotechnology in Wood-based Composite Panels

Wood is a naturally renewable material with both continuous and isolated pore systems. Wood-composite panels have the privilege of offering a homogeneous structure to be used as constructional and structural materials. However, its nature makes it susceptible to biological wood-deteriorating agents, water absorption and thickness swelling, fire, etc. Using nano-materials are very easy in the wo...

متن کامل

Nanotechnology in Wood-based Composite Panels

Wood is a naturally renewable material with both continuous and isolated pore systems. Wood-composite panels have the privilege of offering a homogeneous structure to be used as constructional and structural materials. However, its nature makes it susceptible to biological wood-deteriorating agents, water absorption and thickness swelling, fire, etc. Using nano-materials are very easy in the wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of oral science

دوره 50 4  شماره 

صفحات  -

تاریخ انتشار 2008